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ABSTRACT

The scattering of the sound of a jet engine by an airplane
fuselage is modelled by solving the axially symmetric Helmholtz equation
exterior to a long thin ellipsoid. The integral equation method
based on the single layer potential formulation is used. A family of
coordinate systems on the body is introduced and an algorithm is
presented to determine the optimal coordinate system. Numerical results
verify that the optimal choice enables the solution to be computed with

a grid that is coarse relative to the wavelength.

This report was prepared as a result of work performed under NASA
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I. Introduction

The problem considered here is the numerical computation of the far
field scattering of scalar waves generated by a source at a point q on
the axis of symmetry of an elongated ellipsoid, E (see figure 1). The
physical prqblem that motivated this work is the scattering of the sound
of a jet engine by an airplane fuselage which is modelled by the
ellipsoid. |

If OJE denotes the boundary of E and p represents the independent
variables, one is interested in the solution to the following exterior
Neumann problem:

(1.1) a. AV + kzv = -8(p-q)

b. v. = 0 on 3E
n

c. lim [ v, - ikv|2 dA + 0 (R~ )

R—>>
where the integral in (1.1c) is over spherical shells of radius R and
k is the reciprocal wavelength (2nf/c where f is the frequency and

¢ the sound speed).

It is well known (see Courant-Hilbert, Volume 2, [1]) that the imposition
of the radiation condition (1.1lc) makes the problem (1.1) well posed. In
order to solve (1.1) numerically one writes the solution ¥ as u1 + u
where u is smooth in the exterior of E, which we call E”, and u is

the singular part

(1.2) Cou(p) =

We then obtain the exterior Neumann problem for u which we call problem A:



(1.3) a. Au+ k?u =0

b. u = -ul on OJFE
n n

c. |l u - iku|]R +0 (R~

This paper is concerned with obtaining far field solutions to the
problem (1.3). This problem can be solved explici;ly as an infinite series
(see Bowman [2]) but the series converges slowly unless k is small, and
is not suited to numerical computation for intermediate frequeﬁcies.
Asymptotic expansions are available for large values of k (see [2]
and Levy and Keller [3]) but these will generally not be uniformly valid
for all regions in the far field. There is a large frequency range where
one can not obtain accurate solutions for certain regions of the far field
and for these frequencies direct numerical methods must be applied.

The problem is first formulated as an integral equation by using a
technique discussed by various authors (see Kellogg [4], Copley [5] and

Burton [6]). One assumes the solution has the form

(1.4) u(p) = f;0(a) Cp,q) dA,
ik|p-q|
where G(p,q) = %ﬁ Tp_ql

is the free space Green's function and where the unknown potential o is
defined on the surface BJE. On taking the derivative of (1.4) along the out-
ward normal to the surface O9E and letting the point p approach OJE one
obtains (see [6])the surface Fredholm equation of the second kind |

(1.5) wle) —fdA'c‘,ﬂ(q’)Gnq(q’Q') = ~u_(q)

We consider only the case of axially symmetric Neumann data so that (1.5) re-

duces to a one-dimensional equation.




The formulation expressed by (1.4) and (1.5) has several problems
associated with it. It is known that this formulation will break down
at the eigenvalues of the interior Dirichlet problem (see [6]). 1In
general, at these frequencies the equation (1.5) does not have a solu-
tion and discretizations for nearby frequencies will be numerically
ill-conditioned. An extensive discussion of techniques of overcoming
this problem is given in [6]. It is the experience of the author that
the ill-conditioning due to the interior resonances does not extend over
a wide frequency range and this problem will not be considered further.

A more fundamental problem is that of adequately resolving the
solution o at high frequencies. It can be seen from the form of the
fundamental solution G(p,q) that the Neumann data becomes very oscillatory
at high frequencies and it is found that the potential itself is also
highly oscillatory. The resolution problem requires that one obtain a
grid which not only adequately resolves the solution G but also resolves
the Green's function G(p,q) so that the quadrature (1.4) can be accurately
computed. It will be seen that this is much more crucial for field points
lying near the major axis than near the minor axis as the Green's function
is much less oscillatory in the latter case.

In this paper we introduce a family of new angular coordinates on
the ellipsoid dépending on a free parameter a. We denote this family

by ¢a' These coordinates are related to the polar coordinate angle © by
B |
(1.6) 6 = tan ~ (o tan ¢a)

When o is the ratio of major to minor axes the new coordinates are the

elliptical angular coordinates (see [2]). It will be seen that these




coordinates are generally unsatisfactory when the grid is coarse relative to
the waverlength. If, however, o 1is properly chosen, accurate high frequency
solutions can be obtained with a grid that is coarse relative to the
wave length and which would give unsatisfactory results with an evenly spaced
grid in 6.

A discussion of the method of choosing o 1is given in section 3.
It will be shown in the appendix that if the aspect ratio e 1is large

the choice

(1.7) o =e

is nearly optimal. It is further shown that (1.7) is independent of the

source position.

The study of the resolution problem is made difficult because no exact
solution is effectively available to judge the accuracy of different
schemes. If the source point q is near the tip, however, a solution with
similar oscillatory properties can be obtained. In fact if we let q~

be the point symmetrical to q but interior to E, we will denote by

Problem B the following problem

a. M + K2 = 0 peE”
ik|p-q” |
3 e
1.8 , .3 e |
(1.8) b un(p) Bnp = i peSE

c. llur - ikullR >0 (R > )

Problem B has the exact solution
Jik[p-a”]
u(p) = — PEE
|p-q”|
as can easily be verified. Examination of the Neumann data for the

two problems shows that the oscillatory properties are similar. The




availability of this exact solution permits a detailed evaluation of the
accuracy of various schemes and parameter choices.

In section 2 we give the details of the numerical scheme used used to
solve (1.5). In section 3 we describe how to choose the proper stretching
parameter «. Numerical results are presented and a discussion of the
oscillatory properties of the Green's function in (1.4) 1is given. 1In
section 4 we compare numerical compueations for the scattering problem
with the asymptotic expansion of geometrical optics. It is found that the
accuracy of this expansion depends on the size of the scattered field and
the angle of observation. The convergence of the two solutions as ka increases

will be apparent.

II. Details of the Numerical Scheme

We first establish our notation. We denote by a and b the semi-
major and semi-minor axes of E. The aspect ratio is defined as the ratio
a/b. The quantity k has units (length)—l and in discussing frequencies
we will use the non-dimensional quantity ka. If the coordinates are scaled
by a constant factor a the solution to (1.1), and k are similarly scaled
and thus the actual value of a is irrelevant.

We will use 6 to denote the polar angie and we will define r = g(2)
as the polar coordinate representation of the ellipse which is rotated to
give the ellipsoid. The azimuthal angle will be denoted by A. New angular
coordinates will be denoted b& ¢a where the pafameter o] is given in
(1.6), or just by ¢ if no confusion will arise. Far field solutions will
_be computed on a large circle surrounding E. .By 80 we will denote‘the
polar angle of the observation poinf;

The equation (1.5) is reduced to a l-dimensional equation in the polar
angle ©. Discretization of the integral in (1.5) at n points gives rise

to an nxn linear system. The discretization is done by the trapezoidal

rule using an evenly spaced grid in the new coordinates ¢ (see (1.6)).



Higher order formulas were foﬁnd to be unsatisfactory when the grid was
coarse relative to the wavelength 1/k. This is because higher order
formulas, with a grid spacing h, will have errors of the from (hk)p+l
for some p (see Isaacson and Keller [7]) and hk is not small.

The kernel in (1.5) has an integrable singularity at q = q'.
The behavior near the singularity is the same as for Laplace's equation

(k = 0) and is treated by a technique described in [6]. One uses the

fact that

cu[o)
=1

G(q,q') = %; Go(q,q') + o(1) (q>q")
q q'

where
0 -1
6 (q,q") = (4mlg-q'])
is the free space Green's function for the Laplace equation. From Green's
theorem one has

D 0
[ dagq 3n . C (q,q9') = -3
JE q'

and this enables one to compute the integral of the kernel across the
singularity.

Using the axial symmetry, the equation (1.5) is rewritten as a l-dimen-
sional equation

(2.1) 5%91 - f”/z d6 o(8)H(H,B) = —u_(6)
-n/2

The kernel function is given explicitly by

n

27
H(0,8) = cos B g(8)/ g(6)2+g'(é)2/ a3 6(q,3)
0 q




where the point q corresponds to the spherical coordinates (8,)), and

the point q corresponds to the spherical coordinates (86,0). Introduction
of new coordinates ¢ adds only the term gg~ multiplying H. The numeri-
cal integration in the A direction is done using a grid so that AX cos®
is constant. This integration is not part of the discretization and does
not affect the size of the matrix.

If p denotes a far field point, the solution u(p) is computed by
numerical integration of (1.4). If we denote by E(p,e) the longitudinally

integrated Green's Function.

2m  _ik|p-q

(2.3) G(p,e) = fo dX m

where q 1is the point on the ellipsoid with spherical coordinates (6,A)

then

w/2 -
(2.4) u(p) =/ ; d6 do(6)G(p,0)g(8) /82(9)+8'2(9)
-m/2

The same grid is used as in the solution of (2.1) introducing the factor
a0
d¢
symmetry about the line 6 = 0 and this reduces by one-half the work in-

into (2.4). We point out that the transformation (1.6) preserves the

volved in computing the matrix corresponding to the discretization of (1.5).
This is by far the costliest paft of the computation. Typical running times
on the Cyber 175, for a grid of 129 points are 40 seconds to compute the
matrix and 1.8 seconds for the Gaussian elimination. The computation of

the far field from the numerical integration of (1.4) requires .5 seconds
per point and thus the method becomes more efficient the greater the number

of points required.



I1T. Choice of Stretching Parameter

In order to solve the system (1.4 - 1.5) with a coarse grid, relative
to k, one must make an appropriate choice of the new coordinates ¢, or
equivalently the parameter o (see (1.6)).

It is possible to constructively determine the optimal parameter. To
do this we refer to the integral equation (2.1). Let ¢ be any angular
coordinate system on the ellipse and if q is the source point for either
problem A or problem B we let Rq(¢) be the distance from the axial
point q to the point corresponding to the angle ¢ on the ellipse. The
right hand side of (2.1) will be of the form
ikR_(¢)

(3.1) un(¢) = [smooth function of ¢] x e 4

ikR_(¢)
and thus the oscillatory behavior will be that of the function e 4 .
If ¢a belongs to a family of coordinate systems depending on o it is

clearly necessary to choose the system for which elqu(¢) is the smoothest.

Locally, about any point ¢O, one has

e

0 ' 0
R (O) 2 R_(O7) + RI(6g) (9-47)

and thus

ikR (0)  ikR (07)  1kR' (07) (9-0)
(3.2) R A o d

Equation (3.2) can be interpreted as giving rise to a local wave number
(3.3) n(4?) = kvl (%)

. 0 . -
and the point ¢  where |Ré| is maximized determines the point of largest
local wave number, or equivalently the point where (3.1) is most oscillatory.

It is therefore clear that in order to obtain maximal resolution of (3.1)




with a fixed evenly spaced ¢ grid, one should choose o so that the

maximum of |Ré(¢)| is minimized, i.e., o satisfies a mini-max principal

(3.4) m;r'l m$X|Rq(¢a,)|

For an elongated ellipsoid with aspect ratio e >> 1 the mini-max

problem (3.4) has a solution

e( %? +

(3.5) a = 0(e”2Y)

where the remainder in (3.5) is independent of the source position. The

exact solution of (3.4) is generally not required and the choice

a=e?2
2

is sufficient in the tests which will be described below.

It is found that o determined by (3.4) always provides optimal or
nearly optimal solutions. To demonstrate this we present numerical results
for the test problem B for two different ellipsoids. Ellipsoid 1 has an
aspect ratio of 7.083 and is of direct interest as a model of an airplane
fuselage. Ellipsoid 2 has an aspect ratio of 3 and is used to show that the
stretching transformation (2.2) is not restricted to thin ellipsoids.

The results tabulated below are for a non-dimensionalized frequency
ka of 150. 1In both cases a grid of 129 points was used. The interior
"source" point q' was along the major axis at a distance of .96a and the
field is computed on a sphere of radius of 20.2a.

In table 1 we present L2 errors for ellipsoid 1 for different values

of «. The maximum of ]Ré(¢)| is also indicated.

a max IRél L, error
4,7 16.3 .013
5.0 16.2. .011
5.5 16.54 .012
6.0 17.8 .178
6.8 20.2. 3.51
7.0833 21.0 2.14
7.5 22.3 5.72

TABLE 1.

-9-



In table 2 similar results are presented for ellipsoid 2.

a max |Ré| L, error
2.0 15.8 .11
2.2 15.6 .092
2.4 16.1 .076
2.75 18.4 4.18
3.0 20.1 2.84
3.3 22.1 2.88

TABLE 2.

In both cases we note that stretching based on elliptical coordinates
(i.e., 0o = aspect ratio) gives inaccurate results while if «a is chosen
to satisfy (3.4) accurate results can be obtained.

A more detailed examination of the solutions which generated tables
1 and 2 shows that in all cases the solutions agree closely near the minor
axis and that large errors occur for observation direction near the major
axes. This is due to the nature of the Green's function appearing in the
quadrature (1.5).

It is found the longitudinally integrated Green's function (2.3) is
much more oscillatory for field points p mnear the major axis than the
minor axis. If p 1is along the major axis the Green's function is just

ikR_(¢)
e __p_
4R ()

where Rp is the distance from the point p to the point described by ¢
on the ellipsoid. The results presented in the appendix show that the solu-

tion to (3.4) is independent of the fixed axial point p and thus the

~10-




also provide adequate resolution for the

=

coordinate system obtained wil
quadrature (1.4). As the body approaches a sphere, however, this is not
the case and this limits the accuracy which can be obtained for field points
‘near the major axis. |

The principles described here have been used to generate solutions
for the scattering problem A. Comparing solutions for different grid
sizes, it has been found that determining & by the principal (3.4)
enables one to compute accurate solutions with grids that are much coarser
than those required for the natural coordinate system of the elliptical

angular variables.

Iv. Comparisons With Geometrical Optics

For large values of ka asymptotic expansions for the solution to
problem A are known. The most common expansion is that of geometrical
optics (described concisely in [2], pp. 22-24 and discussed in greater
generality in [3]). Here we do not attempt to describe the theory but
rather to judge the validity of this expansion as compared to accurate
solutions generated by the integral equation method.

Referring to figure 2, geometrical optics predicts the field at the
point p as the superposition of the incident field and the scattered
fiéld reflected from the point s. It is apparent from the figure that
there is a region where no reflected rays can reach. This is called the
shadow region and the geometrical optics field has a discontinuity between
the shadow region and its complement (the illuminated region). 1In the
notation of figure 2 the geometrical optics field can be written as

Jikla-pl oik|s=p| . _
(4.1a) Vgo(p) = Z}TE:ET— + Z(p)T;:ET—__ pe illuminated region

(4.1b) v_o(P)

20 0 p € shadow region

-11-




The amplitude function =z(p) is determined by a principle of
"conservation of energy' along tubes of rays and is given explicity in
[2] (p. 24). We point out that (4.1) must be regarded as an approximation
to the full problem (1.1) and not for the solution u to (1.3). This
will become apparent from the results presented below.

Computations were made for ellipsoids 1 and 2 for different source
positions and different values of ka. Solutions were computed at 10°
intervals on a circle of radius 20.2a and the integral equation solutions
foé the scattered field are believed accurate to 10%. L2 differences
were computed and normalized by both the total and scattered field.

Results are first presented for 60<z 0 where geometrical optics
is most accurate. Table 3 shows the L2 differences for ellipsoid 1 for
the source at 1.04a. The second entry, El’ is the L2 difference normalized
by the total field while the third entry, EZ’ has normalization by just the
scattered field. The fourth entry, Rl’ is the ratio of the L2 norm of the

scattered field to the L norm of the total field.

2
ka B E, Ry
75 .122 .720 16 |
100 .096 .576 .16
125 .088 .545 .18
150 .083 414 .20
200 .060 .316 .19
TABLE 3.

We observe that the errors normalized by the total field are very small
and do not reflect the large errors when normalized by just the scattered
field. This is because geometrical optics is an approximation to the total
field and will not accurately approximate the scattered field when it is
only a small component of the total field.

This is further demonstrated in table 4 where the same quantities are

presented for ellipsoid 2. Here the scattered field is a much greater component

-12-




of the total field and we

to the normalization

see that the errors are relatively insensitive

ka E1 E2 R1

125 .088 .185 .47

150 .082 .148 .48
TABLE 4.

Finally we consider the accuracy of the approximation (4.1) as the

shadow region is approached. Table 5 shows the same quantities but with

the region 90 Z_—6OO used for the comparison. All points are in the

illuminated region but the degradation as one approaches the shadow region

is apparent.

In table 6 the same quantities are given with the errors taken over

the entire region.

ka El ,E2 Rl
75 .176 1.22 14
100 .154 1.01 .15
125 .149 .903 .17
150 .147 .795 .18
200 124 .675 .18
TABLE 5.

The very large inaccuracy of (4.1b) is clearly evident.

ka E1 E2 R1

75 .288 1.21 .24

100 .263 1.01 .26

125 .260 .853 .30

150 .253 .740 .34

200 .221 .632 .34
TABLE 6.

-13-




The conclusion drawn is that the validity of the geometrical optics
approximation depends on the size of the scattered field relative to the
total field and on whether the region of interest is bounded away from
the shadow region. In the shadow region the theory of geometrical diffrac-
tion (see [2], Chapter 11) has been tested and found very inaccurate for
elongated ellipsoids.

An experiment to verify these results has been conducted and is
reported on separately (see Bayliss and Maestrello [8]). Close agreement
was obtained using ellipsoid 1 for values of ka wup to 166, the limit of
the experimental apparatus. Figure 3 is a polar plot of the sound pressure
level (relative to the axis) for ka = 166. Also plotted are the experi-
mental values and ;he results predicted by geometrical optics. The diver-
gence of the two methods as the shadow region is approached is evident.

It is felt that the principle of minimizing the local wave number as
outlined in section 3 provides a method for extending the range of fre-
quencies for which scattering can be computed numerically for a given amount
of work. The method appears to be general, at least for bodies which do
not have edges or cusps and although typically the mini-max principle
(3.4) can only be solved numerically, this could make substantial improve-

ments in the efficiency of the numerical calculations.

-14-




Appendix

Here we give a proof of relation (3.5) in the determination of the

optimal parameter Q.

Letting Ge denote the elliptical angular coordinates we have
-1
8 = tan (e tan Be) .
Thus if vy dis defined by
_ -1
(A-1) ee = tan (Y tan ¢)
it follows that
o =eY
and it is thus sufficient to show that
V2

(a-2) v =22+ 0™

For simplicity we will set a =1 so that e = 1/b where b is

the semi-minor axis. We can then rewrite equation (A-2) as

(A-3) y =25 + O(b2)

Nlr\?l

If =z

0 denotes the source position, (z0 > 1) we have

R (6) = (sin 6 -z )% + b2cos?®
z0 e e 0 e

for the distance function from the source to the body. Dropping the sub-

script zq and differentiating we obtain

. . 9
cos Ge[51n Ge(l—b ).ZO]

dR__
a6 R ’
e

-15-




which can be written as
2
(A-4) ==— = cos ee(1+ 0(b7))

with the reminder uniform in ee and uniform in z for zg bounded
away from 1.
From (A-1) we obtain
¢ = tan—-l(Y_1 tan ee)

and on differentiating we have

de -1
(A-5) 352 = (%%;)= (Y2c0528e + sinzee)/y

Letting w = sirree the mini-max principle of (3.4) can now be stated as

(A-6) min 1/y max [//l—wz (l+0(b2))(Y2(1—w2)+w2)].
0<y |wi<i

If we denote by m(Y,b) the maximum of the term in brackets in (A-6)
and by T(y,b) the quotient m(y,b)/y it follows by straightforward

differentiation that

7’ 2 2 2 N
— s Y ,ﬁ‘g ‘
33 //l—yz
(A-7) m(y,0) = $
2 2 2
Y ; Y 23
\. J

and thus it is easy to see that T(y,0) has a unique minima at v = Y* =

2
with 9—% (y*,0) > 0.
dy

Now for small b we have for some constant C

(l—Cbz)T(Y,O) < T(y,b) < T(Y,O)[1+Cb2]

-16-




2

[=W
3

(Y*,0) 1is non-zero that the

|

and it follows from the fact that the

N

dy

minima of T(Y,b), which we denote by Yy satisfies
2

lv,-v*| = 0(6%)

which was to be proved.
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